Omni Loader Docs
  • OVERVIEW
    • About
    • Getting Started
    • Databases
    • Performance considerations
    • Prerequisites
  • Project Wizard
    • General
    • Database List
    • Favorites
    • Review
  • Project types
    • Full Table Copy
    • Data Compare & Sync
    • Change Data Capture
    • Overview
  • Project Options
    • General
    • Performance
    • Databases
    • Mapping
    • Logging
    • Troubleshooting
  • Table Options
    • Columns
    • WHERE clause
    • Partitioning
    • Cut-off
    • Options Override
  • Global Settings
    • Overview
  • Automations
    • Overview
    • JSON job specification
  • Connections
    • Amazon RedShift
    • Analytics Platform System
    • Synapse Dedicated Pool
    • CockroachDB
    • CSV
    • Databricks
    • DB2 iSeries
    • DB2 LUW
    • DB2 zOS
    • Greenplum
    • Google AlloyDB
    • Google BigQuery
    • MariaDB
    • MySQL
    • Netezza
    • NuoDB
    • ODBC
    • Oracle
    • Parquet
    • PostgreSQL
    • Snowflake
    • Sybase ASE
    • Sybase IQ
    • SQL Server
    • Teradata
    • Vertica ODBC
    • Fabric Lakehouse
    • Fabric Warehouse
    • Azure SQL Database
    • V-ORDER Fabric Lakehouse Optimization
Powered by GitBook
On this page
  • Load Data Using Single SQL Inserts
  • Shuffle Tables
  1. Project Options

Troubleshooting

PreviousLoggingNextColumns

Last updated 10 months ago

Load Data Using Single SQL Inserts

Bulk copy, bypassing SQL engine, is extremely performant. However, when there is a problem with the data and the target database reports an error, a whole batch of rows is discarded instead of a single records with problematic data. In such cases it makes sense to select just a problematic table, turn on this option, and examine the Error SQL log.

Shuffle Tables

Randomize the order in which tables are loaded to the target database. This is particularly useful for testing and scenarios where the load order could affect the outcome, such as when using generated demo databases where dependencies between tables are not a concern.